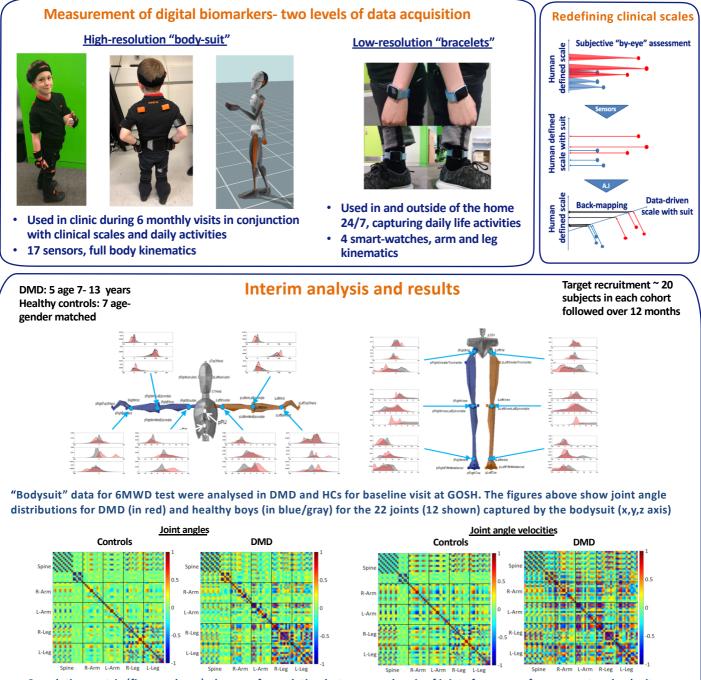
Imperial College London

Great Ormond Street NHS Hospital for Children


Kinetic fingerprints in Duchenne muscular dystrophy

^{*}<u>Valeria Ricotti</u>^{1,2}, *Balasundaram Kadirvelu^{3,4,5}, Victoria Selby¹, Shlomi Haar^{3,5}, Chaiyawan Auepanwiriyakul^{3,4,5}, Shuai Zeng⁴, Carl Morris², Thomas Voit¹, Aldo Faisal^{3,4,5}

¹NIHR Great Ormond Street Hospital Biomedical Research Centre/UCL Great Ormond Street Institute of Child Health ²Solid Biosciences ^{3,4}Brain & Behaviour Lab Dept. of Bioengineering, Dept. of Computing, Imperial College London, ⁵Behaviour Analytics Lab, Data Science Institute, Imperial College London ^{*}The authors contributed equally

Digital behavioural biomarkers - disruptive healthcare technology supporting clinical trials

- Clinical trials for Duchenne muscular dystrophy (DMD) rely on endpoints of muscle function and strength, which are largely dependent on motivation and hospital appointments
- A compact and wireless system, attached to clothing for the recording of body motion in clinic and in a natural environment was employed, leveraging Artificial Intelligence (AI) for the readouts

 Correlation matrix (figures above): degree of correlation between each pair of joints for range of movement and velocity showed striking differences in walking patterns between healthy boys and DMD (p<0.01)

• Further analysis will be carried out on longitudinal data and data acquired from low-resolution recording of daily life activities with the goal to identify novel DMD-specific objective and quantifiable kinetic biomarkers

Acknowledgement: We acknowledge funding from Duchenne Research Fund for this study

