ON BEHALF OF THE INSPIRE DUCHENNE STUDY TEAM

Initial Experience From the INSPIRE DUCHENNE Phase 1/2 Study of SGT-003 Microdystrophin Gene Therapy for Duchenne Muscular Dystrophy

AUTHORS: <u>Kevin M. Flanigan</u>,¹ Perry B. Shieh,² Hernan D. Gonorazky,³ Aravindhan Veerapandiyan⁴, J. Patrick Gonzalez,⁵ Matthew M. Harmelink,⁵ Gabriel Brooks⁵

AFFILIATIONS: 1. Nationwide Children's Hospital, Columbus, OH, USA; 2. University of California, Los Angeles, Los Angeles, CA, USA; 3. The Hospital for Sick Children, Toronto, ON, Canada; 5. Arkansas Children's Hospital, Little Rock, AR, USA; 5. Solid Biosciences, Charlestown, MA, USA

SGT-003 is an investigational product that has not been approved in any region. No conclusions regarding safety and efficacy can be made.

Disclosures

Clinical trial support:

- Sarepta
- Dyne

•

- Avidity
- Ultragenyx
- Solid

Advisory boards:

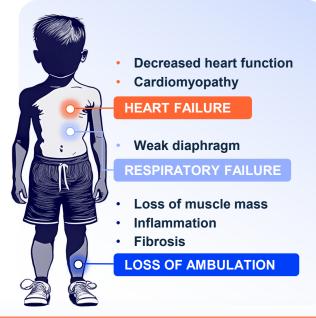
- Armatus
- Encoded
- Insmed
- Dyne
- Solid

Past royalties:

Astellas

Duchenne Muscular Dystrophy (Duchenne): Background

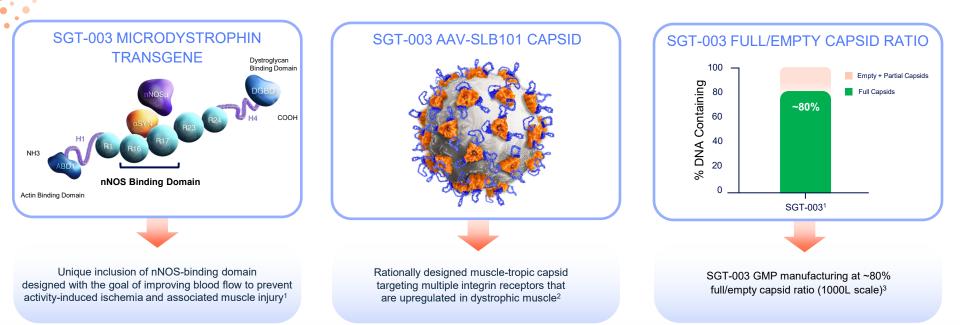
Duchenne is an X-linked recessive neuromuscular disorder caused by a lack of functional dystrophin¹


Dystrophin is required for maintaining muscle integrity and function²⁻⁴

 Deterioration of muscle integrity leads to loss of essential membrane proteins and muscle fiber breakdown and leakage, resulting in progressive functional decline

Shortened, functional "microdystrophin" transgenes can be packaged into AAVs to replace dystrophin⁵

 Microdystrophins can vary based on their unique compositions⁶



The impact of treatments on muscle integrity is key for patients with Duchenne⁷

AAV=adeno-associated virus.

1. Duan D, et al. Nat Rev Dis Primers. 2021;7(1):13. 2. Sheybani A, et al. Pediatr Res. 2022;92(6):1613-1620. 3. Voleti S, et al. Pediatr Cardiol. 2020;41(6):1173-1179. 4. Wagner KR, et al. Biomark Med. 2021;15(15):1389-1396. 5. Crudele JM, et al. Hum Mol Genet. 2019;28(R1):R102-R107. 6. Ramos JN, et al. Mol Ther. 2019;27(3):623-635. 7. Escobar-Huertas JF, et al. Cytoskeleton (Hoboken). 2024:81(6-7):269-286.

SGT-003: A Next-Generation AAV-Microdystrophin Gene Therapy Candidate^a

SGT-003's optimized transgene and next-generation capsid were selected to deliver a unique microdystrophin to muscles throughout the body while also de-targeting the liver^{1,2}

αSVN=alpha-syntrophin; ABD1=actin-binding domain 1; DGBD=dystroglycan-binding domain; H=hinge; nNOS=neuronal nitric oxide synthase; R=spectrin-like repeat. *SGT-003 is an investigational product that has not been approved in any region. No conclusions regarding safety and efficacy can be made. 1. Lai Y, et al. J Clin Invest. 2009;119(3):624-635. 2. Vu Hong A, Nat Commun. 2024;15(1):7965. 3. Data on file. Solid Biosciences. 2025.

4

INSPIRE DUCHENNE: Study Overview

- Single-dose level, open-label, Phase 1/2 study
- Ambulatory patients with Duchenne
- Prophylactic prednisone regimen as immunomodulation
- Actively enrolling: US, Canada, and Italy
- Regulatory study-level approval: UK
- NCT06138639

Primary Objective: To investigate the safety and tolerability of a single 1.0E14 vg/kg IV dose of SGT-003

Primary Endpoint: Incidence of treatment-emergent adverse events through Day 360

Secondary Objective: To investigate the efficacy of a single IV dose of SGT-003

Secondary Endpoints:

- Expression: Microdystrophin protein levels at Days 90 and 360
- Motor function: TTR, 10MWR, NSAA, 4SC, 6MWT, SV95C at Day 540
- Pulmonary function: Percent predicted FVC, PEF, FEV1 at Day 540

KEY ELIGIBILITY CRITERIA

Age:	Cohort 1: Aged 4 to <7 years Cohort 2: Aged 7 to <12 years	Antibodies:	Negative for AAV9 antibodies	
			No history of gene therapy	
DMD Genetic Variant Exclusions:	Any deletion in exons 1 to 11 and/or 42 to 45, inclusive	Prior Treatments:	≥12-week washout from exon-skipping therapies, vamorolone, and/or givinostat	
Function:	Cohort 1: N/A Cohort 2: TTR and 10MWR criteria	Steroid Regimen:	On a stable dose of daily oral steroids (prednisone/deflazacort) for ≥12 weeks	

4SC=4-stair climb; 6MWT=6-minute walk test; 10MWR=10-meter walk/run; FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; IV=intravenous; N/A=not applicable; NSAA=North Star Ambulatory Assessment; PEF=peak expiratory flow; SV95C=stride velocity 95th centile; TMA=thrombotic microangiopathy; TTR=time to rise.

5 Data on file. Solid Biosciences. 2025

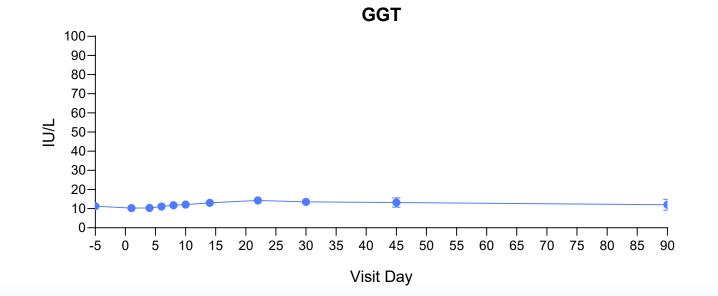
INSPIRE DUCHENNE: Demographics for the First 7 Participants

As of a data cutoff of March 7, 2025, 7 participants have received SGT-003 and have had follow-up periods ranging up to 9 months post-dosing

Participant	Age at Dosing (Years)	Race/Ethnicity	Weight (kg)	
1	5	White/Not Hispanic or Latino	19.6	
2	5	White/Not Hispanic or Latino	26.4	
3	7	White/Not Hispanic or Latino	27.8	Da biops
4	6	White/Not Hispanic or Latino	22.0	biom da avai
5	7	White/Not Hispanic or Latino	23.2	avai
6	7	Asian/Not Hispanic or Latino 18.9		
7	8	Asian/Not Hispanic or Latino	23.9	

Interim Safety Summary

No treatment-emergent SAEs reported


All treatment-related AEs resolved without sequelae in the weeks following dosing

- Glucocorticoids alone used for immunosuppression
- No biomarker or clinical evidence of liver injury observed
- No need for any additional immunosuppression agents
 - No eculizumab^a
 - No sirolimus

SGT-003 Treatment-Emergent Adverse Events (TEAEs) Data cutoff March 7, 2025		Total Participants (N=7)	
		n (%)	
Serious Adverse Events (SAEs)		0 (0)	
	Hepatotoxicity	0 (0)	
Adverse Events of Special	Thrombotic Microangiopathy	0 (0)	
Interest (AESIs)	Myocarditis	0 (0)	
	Myositis	0 (0)	
The most common treatment-related adverse events (AEs) reported: nausea (n=7), vomiting (n=6), headache (n=4), and thrombocytopenia/platelet count decreased (n=4)			

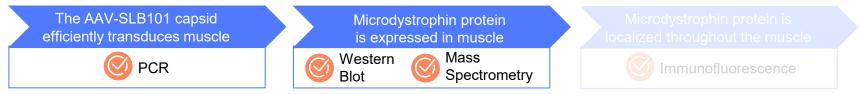
GGT Within Normal Range at all Timepoints Evaluated for First 7 Participants

As of a data cutoff of March 7, 2025, no GGT results were above laboratory upper limits of normal at any timepoint after dosing with SGT-003

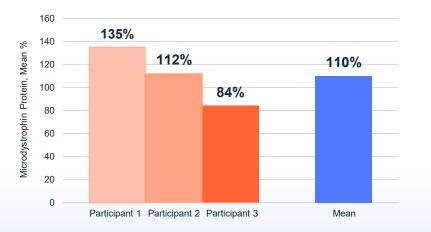
8

Vector Genome Copies in Day 90 Muscle Biopsies

PCR analysis demonstrated high vector genome copies in muscle



Vector Genome Copies/Nucleus

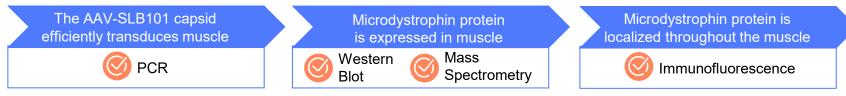

Participant	Dose	Copies/Nucleus		
1		19.8		
2	1.0E14 vg/kg	28.6		
3		7.6		
Mean		18.7		

SGT-003 Microdystrophin Expression in Day 90 Muscle Biopsies

Western blot and mass spectrometry demonstrated high microdystrophin protein levels

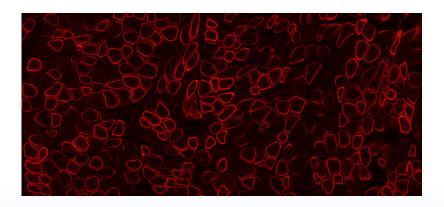
Microdystrophin Expression Measured by Western Blot^a

Microdystrophin Expression Measured by Mass Spectrometry^a



PCR=polymerase chain reaction [®]Baseline Western blot and mass spectrometry were both 0% mean normal dystrophin.

10 Data on file as of February 11, 2025. Solid Biosciences


SGT-003 Microdystrophin Protein Distribution in Day 90 Muscle Biopsies

Immunofluorescence demonstrated microdystrophin protein in a high proportion of muscle fibers

Microdystrophin-Positive Fibers Measured by Immunofluorescence^a

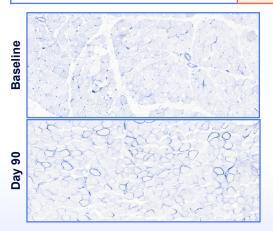
PCR=polymerase chain reaction *Baseline mean dystrophin-positive fibers were 1.5% measured by immunofluorescence. Dystrophin-positive fibers are not adjusted for fat and fibrosis; these are absolute numbers. Participant 2 representative image is shown in the right panel.

11 Data on file as of February 11, 2025. Solid Biosciences

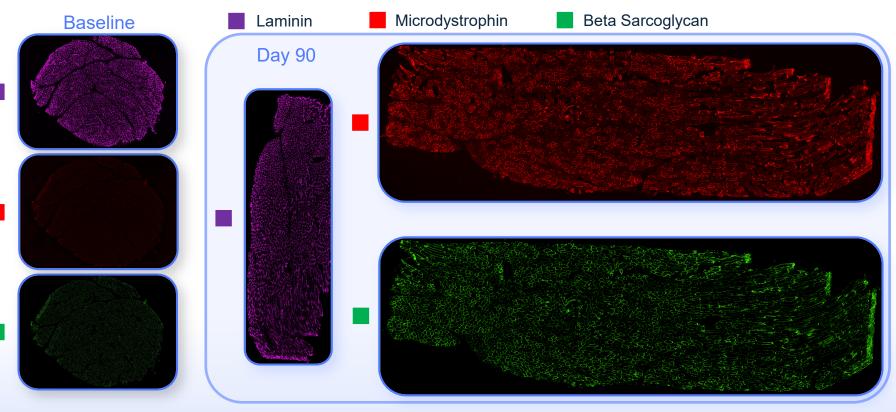
Muscle Biopsies Showed Increases in Key Elements of the Dystrophin-Associated Protein Complex

Percent Positive Fibers – Microdystrophin^a

Participant	1	2	3	Mean
Day 90 Values	77%	88%	70%	78%
Baseline Values	0.8%	2.3%	1.3%	1.5%
Change From Baseline (Fold Change)	96x	38x	53x	53x

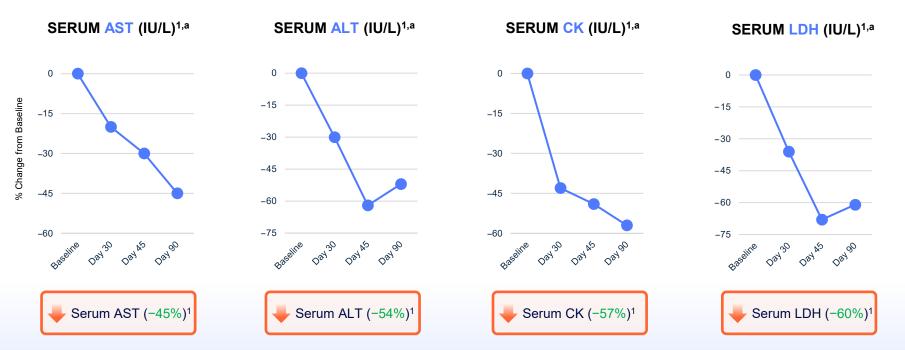

Participant	1	2	3	Mean
Day 90 Values	60%	88%	63%	70%
Baseline Values	0%	2.5%	1.5%	1.3%
Change From Baseline (Fold Change)	∞	34x	41x	52x

Percent Positive Fibers – 8-sarcoglycan^a


Percent Positive Fibers – nNOS activity^a

Participant	1	2	3	Mean
Day 90 Values	48%	53%	25%	42%
Baseline Values	0%	1.5%	0.5%	0.7%
Change From Baseline (Fold Change)	~	34x	49x	62x

^aDystrophin-positive fibers are not adjusted for fat and fibrosis; these are absolute numbers. Participant 2 representative images are shown. Data on file as of February 11, 2025. Solid Biosciences.


Full Slide Scans of Muscle Biopsy Sections Showed Uniform Increases in Key Elements of the Dystrophin-Associated Protein Complex^a

^aParticipant 2 representative images are shown. Laminin staining is used to demarcate muscle membranes. Data on file. Solid Biosciences, 2025.

Improvements in Markers of Muscle Injury¹

AST, ALT, CK, and LDH are released from muscle into circulation in Duchenne due to tissue damage and muscle injury²⁻⁴

ALT=alanine aminotransferase; AST=aspartate aminotransferase; CK=creatine kinase; LDH=lactate dehydrogenase. aMean (n=3) change from baseline results shown.

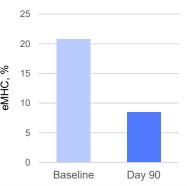
1. Data on file. Solid Biosciences. 2025. 2. Aulbach AD, Amuzie CJ. A Comprehensive Guide to Toxicology in Nonclinical Drug Development. 2nd ed. 2017. 3. Kim EY, et al. Ann Rehabil Med.

14 2017;41(2):306-312. 4. Farhana A, Lappin SL. StatPearls [Internet]. 2023.

Improvements in Markers of Muscle Breakdown and Dystrophic Regeneration¹

Baseline

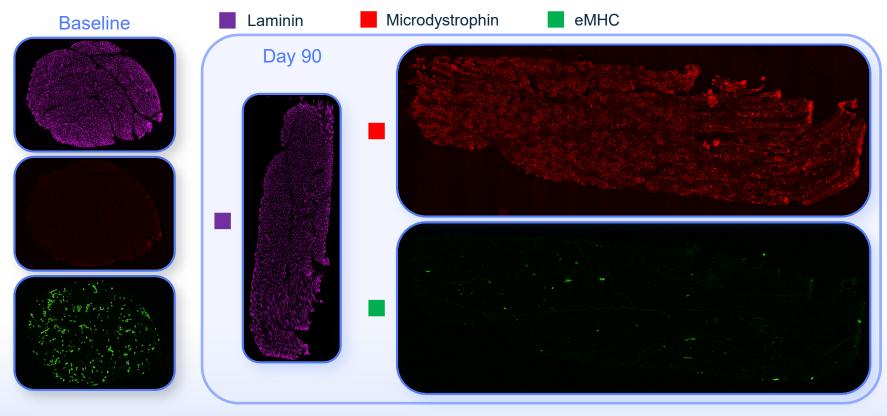
Day 90


Titin is actively degraded and released into serum and urine when muscle is damaged²

SERUM Titin (pmol/L)^{1,a}

eMHC is expressed in dystrophic muscle fibers that have recently undergone degeneration/regeneration³

eMHC-Positive Fibers^{1,a}


Histologic eMHC (-59%)¹

eMHC=embryonic myosin heavy chain.

^aMean (n=3) absolute and percentage change from baseline results shown. ^bParticipant 2 representative images are shown.

15 1. Data on file. Solid Biosciences. 2025. 2. Oshida N, et al. Sci Rep. 2019;9(1):19498. 3. Guiraud S, et al. Hum Mol Genet. 2019;28(2):307-319.

Full Slide Scans of Muscle Biopsy Sections Showed Uniform Improvements in eMHC, a Marker of Muscle Breakdown and Dystrophic Regeneration^a

^aParticipant 2 representative images are shown. Laminin staining is used to demarcate muscle membranes
Data on file. Solid Biosciences. 2025.

Positive Changes Observed in Cardiac Markers¹

^aSerum troponin data only from Participant 3 at Day 90: Participant 3 had elevated troponin levels at baseline. Troponin levels for Participants 1 and 2 were 0 at baseline. ^bParticipant 3 has yet to reach the Day 180 follow-up as of the data cutoff. All 3 participants demonstrated LVEF above baseline at all follow-up timepoints. 1. Data on file as of February 11, 2025. Solid Biosciences. 2. Voleti S, et al. *Pediatr Cardiol.* 2020;41(6):1173-1179.

17

INSPIRE DUCHENNE: Current Summary

INITIAL MUSCLE BIOPSY RESULTS FOR THE FIRST 3 PARTICIPANTS REACHING DAY 90

- Mean vector genome copies per nucleus: 18.7
- Mean microdystrophin expression: 110% of normal (Western blot), 108% of normal (mass spectrometry)
- Mean microdystrophin percent-positive fibers: 78%
- Mean β-sarcoglycan percent-positive fibers: 70%
- Mean nNOS-positive fibers: 42%

MUSCLE INTEGRITY BIOMARKER RESULTS FOR THE FIRST 3 PARTICIPANTS REACHING DAY 90

Consistent improvements across 7 biomarkers

NO SERIOUS ADVERSE EVENTS IN THE 7 PARTICIPANTS TREATED (DATA CUTOFF MARCH 7, 2025)

 Most common treatment-related adverse events observed were nausea, vomiting, headache, and thrombocytopenia/platelet count reduced

Acknowledgments

Thank you to the study participants and families! Thank you to participating clinical sites, investigative teams, and study partners!

Nationwide Children's Hospital (Columbus, OH)

Kevin Flanigan, MD

Arkansas Children's Hospital (Little Rock, AR)

Aravindhan Veerapandiyan, MD

Children's Hospital of The King's Daughters (Norfolk, VA)

Crystal Proud, MD

Rare Disease Research (Atlanta, GA)

• Renata Shih, MD

University of California, Davis (Sacramento, CA)

Craig McDonald, MD

University of California, Los Angeles (Los Angeles, CA)

Perry Shieh, MD, PhD

The Hospital for Sick Children (Toronto, ON)

Hernan Gonorazky, MD

Gemelli Hospital (Rome, Italy)

• Eugenio Mercuri, MD, PhD

Scan the QR code to navigate to the study posting (NCT06138639)